


Table of Contents

Executive Summary 4
Scoping 5
Phases 6

Project Alignment 6
Attack Surface Discovery 6
Attack Surface Analysis 6
Pentester Testing 7
Reporting 7
Retesting 7

Project Alignment 8
Philosophy 8
Outcome 8
Methodologies 8

Attack Surface Discovery 9
Philosophy 9
Outcome 9
Methodologies 9

Attack Surface Analysis 12
Philosophy 12
Outcome 12
Methodologies 12

Pentester Testing 14
Philosophy 14
Outcome 14

Web 15
Objectives 15
Guidebooks 16

Android 21
Objectives 21
Guidebooks 22

iOS 26
Objectives 26
Guidebooks 27

API 31
Objectives 31
Guidebooks 31



External Network 35
Objectives 35
Guidebooks 35

Internal Network 38
Objectives 38
Guidebooks 38

Application Pentest for AWS 41
Objectives 41

Reporting 42



Executive Summary

The purpose of this document is to showcase the methodologies that

HackerOne pentesters follow throughout the pentest engagement to ensure

wide and deep coverage. The document demonstrates how HackerOne

assesses the effort required to perform thorough security engagements

against customer technologies. HackerOne has developed this document by

consulting internal and external industry experts, leveraging industry

standards, evaluating thousands of time-bound and long-term global client

programs, and reviewing millions of vulnerability reports. Through constant

feedback and engagement, HackerOne continues to mature its methodologies

in both effort and approach to offer its customers maximum security

assurance.



Scoping

HackerOne understands that no asset is the same; therefore, no pentest

should be scoped using generic assumptions. Applying a one-size-fits-all

model to pentests risks the quality and completion of the assessment.

HackerOne has developed a scoping process that balances cumbersome

traditional scoping processes with blanket figures. In a customer-facing

questionnaire, customers are asked to provide high-level details about the

assets being engaged and relevant testing expectations. Once this

information is gathered, HackerOne leverages a calculation process based on

historical data to determine the proper product offering for its customers.

HackerOne also uses this information to determine if and how pentesters can

access the targets remotely. This process ensures pentesters are able to

conduct quality work with reasonable expectations and customers are

provided a thorough engagement bolstered by security assurance.



Phases

HackerOne’s phased testing approach provides a series of guideposts for

testers to ensure quality control and checkpoints throughout the

engagement. This approach opens up opportunities to review progress and

proactively communicate across parties to address questions as they come

up. Customers gain increased awareness of testing activities to ensure these

activities are completed in order. In this phased approach, testers understand

the assets in-scope, assess the entire attack surface, and dive into discovered

attack vectors using HackerOne-created guides to empower their own

creativity.

Project Alignment

HackerOne and the customer work closely to ensure they align on goals, KPIs,

and restrictions. Based on this understanding, HackerOne customizes testing

guidance and assigns pentesters based on their skill sets and experience.

Attack Surface Discovery

Pentesters seek to confirm access to all in-scope assets and gain an initial

understanding of the attack surface they are asked to engage in and/or that

could present avenues into the attack surface.

Attack Surface Analysis

Pentesters seek to identify potential attack vectors across the identified attack

surface, prioritizing attack vectors by suspected ease of exploitation and

potential impact.



Pentester Testing

Pentesters leverage the groundwork from previous phases to begin their

assault against the attack surface, demonstrating the customer’s security risk

or exposure to a malicious actor.

Reporting

Findings are reported in real-time through the platform, and customers can

send these findings to issue trackers and vulnerability management software

using built-in integrations.

Customers are provided with deliverables that empower them to

communicate issues to internal teams, provide their own customers with

proof of testing, review the state of security for scoped assets, and provide

assurance of penetration testing to auditors.

Retesting

Pentesters review the remediations that customers implement to fix

discovered vulnerabilities to confirm that the system has been successfully

patched and is no longer vulnerable to the original findings.



Project Alignment

Philosophy

It is always best to launch any project/engagement with alignment and a clear

understanding of objectives than to turn a moving train.

Outcome

Complete alignment on what assets are to be tested, how pentesters can

access the targets remotely, how they are to be tested, and any restrictions

towards testing.

Methodologies

HackerOne uses an adaptive approach that meets customers’ needs while

maintaining a standard of excellence, leveraging team collaboration tools,

media, meetings, training, and in-platform guidance and checklists. During

testing, HackerOne pentesters follow asset-specific checklists for each asset in

scope. The HackerOne checklists are based on industry-standard

methodologies and security frameworks such as; OWASP Top 10 standards1

(web / API / mobile), CWE guidance from MITRE , direct input from the AWS2

Security team, and the HackerOne Top 10 list.3

3 HackerOne Top 10 List - https://www.hackerone.com/top-ten-vulnerabilities
2 MITRE - https://cwe.mitre.org/
1 OWASP Top 10 Lists - https://owasp.org/Top10/

https://www.hackerone.com/top-ten-vulnerabilities
https://cwe.mitre.org/
https://owasp.org/Top10/


Attack Surface Discovery

Philosophy

Pentesters must first understand and verify the entire attack surface before

any active attacks.

Outcome

Pentesters are aware of the entire attack surface, including the perimeter of

the attack surface, available access, and the size of the targeted assets when

applicable.

Methodologies

Standard

Scope Review

Company Research

Web Application

Application mapping

Understand the business logic

Identify Core features to test

Identify input fields (injection points)

Brute Forcing directories

Google Dorking

Wayback machine/archive.org

Public Disclosures



Mobile Applications

Built-in Protections

Application mapping

Understand the business logic

Identify Core features to test

Identify input fields (injection points)

Looking for old versions of the same application

Google Dorking

Wayback machine/archive.org

Extract static strings and URLs from .apk or .ipa

Public Disclosures

Network

Quick TCP Port scanning to find live IPs

Full TCP port scanning

UDP port scanning

Nmap scripts

Shodan queries

Google Dorking

Wayback machine/archive.org



API

API mapping

Read API documentation

Understand the business logic

Identify Core endpoints to test

Public Disclosures

Versioning / Identify legacy API versions

Identify user interfaces (such as mobile apps) using this API

Desktop Applications

Built-in Protections

Application mapping

Understand the business logic

Identify Core features to test

Identify input fields (injection points)

Looking for old versions of the same application

Google Dorking

Wayback machine/archive.org

Extract static strings and URLs from the binary

Public Disclosures and CVEs



Attack Surface Analysis

Philosophy

Prior to engaging an attack vector, pentesters should first discover possible

attack vectors and entry points.

Outcome

Pentesters have an in-depth understanding of potential attack vectors and entry
points within the attack surface and prioritize active testing toward the most
promising observations.

Methodologies

Web Application

Automated Scanning

Focused Scanning

Findings Analysis

Mobile Application

Static Analysis

Integration Analysis

Automated Scanning

Focused Scanning

Findings Analysis



Network

Automated Scanning

Focused Scanning

Findings Analysis



Pentester Testing

Philosophy

Give pentesters the freedom to explore the attack surface utilizing their

unique skills and expertise while providing coverage and consistency from

each engagement.

Outcome

Testers complete testing against key objective areas developed for each asset

technology. The testers are empowered with guidebooks for each objective to

ensure the depth of their testing but do not confine their testing to

prescriptive requirements.



Web

A single web application is a contained codebase that typically interfaces with the end-user,

passing commands over the internet and connecting UI with a web server. A single web

application is not a wildcard domain but rather a single fully-qualified domain name [FQDN].

Testing can be conducted internally or externally.

Objectives
Objectives ensure that extensive coverage of scope occurs.

Coverage Objectives

Injections

Broken Authentication

Sensitive Data Exposure

XML External Entities (XXE)

Broken Access Control

Security Misconfiguration

Cross-Site Scripting (XSS)

Insecure Deserialization

Using Components with Known Vulnerabilities

Server-Side Request Forgery

Cross-Site Request Forgery

Open Redirect



Guidebooks
Guidebooks provide non-restrictive test cases for testers to review per technology and
scope

Injections

Task

Code Injection

Command Injection

Buffer Overflow

HTTP Splitting/Smuggling

SQL Injection

ORM Injection

IMAP/SMTP Injection

HTTP Parameter Pollution

Server Side Template Injection (SSTI)

Unrestricted File Upload



Broken Authentication

Task

Default Credentials

Bypassing Authentication Schema

Privilege escalation

Account Enumeration and Guessable User Account

Weak password policy

Session Fixation

Session Puzzling

Weaker authentication in alternative channel

Weak security question/answer

Weak password change or reset functionalities

Cookies attributes

Vulnerable Remember Password

Logout Functionality

Session Timeout

Weak lock out mechanism

Sensitive Data Exposure

Task

Sensitive information sent via unencrypted channels

Credentials Transported over an Encrypted Channel

Weak SSL/TLS Ciphers, Insufficient Transport Layer Protection

Padding Oracle

HTTP Strict Transport Security



XML External Entities (XXE)

Task

XML External Entities (XXE)

Broken Access Control

Task

Directory traversal/file include

Insecure Direct Object References

Business Logic Data Validation and Bypass

Security Misconfiguration

Task

Information Leakage using Search Engine Discovery

Information Leakage via Webpage Comments and Metadata

Network/Infrastructure Configuration

Application Platform Configuration

File Extensions Handling for Sensitive Information

Old, Backup and Unreferenced Files for Sensitive Information

Information Leakage via Webserver Metafiles

Stack Traces

Clickjacking

HTTP Methods

RIA cross-domain policy

Error Codes



Cross-Site Scripting (XSS)

Task

Stored Cross-Site scripting

Blind XSS

Reflected Cross-Site scripting

Cross-Site flashing

DOM-based Cross-Site scripting

HTML Injection

Insecure Deserialization

Task

Insecure Deserialization

Using Components with Known Vulnerabilities

Task

Enumerating Applications on Webserver

Mapping out Application Architecture

Known Vulnerabilities on Dependencies and Services

Server Side Request Forgery

Task

Server-Side Request Forgery

Cross-Site Request Forgery

Task

Cross-Site Request Forgery



Unvalidated Redirects and Forwards

Task

Open Redirect



Android
A single software application that is designed to operate on the Android operating system.
Testing could involve a development environment or a production phone/device.

Objectives
Objectives ensure that extensive coverage of scope occurs.

Coverage Objectives

Injection

Improper Platform Usage

Insecure Data Storage

Insecure Communication

Insecure Authentication

Insufficient Cryptography

Insecure Authorization

Client Code Quality

Code Tampering

Reverse Engineering

Extraneous Functionality



Guidebooks
Guidebooks provide non-restrictive test cases for testers to review per technology and
scope

Injections

Task

SQL Injection

XML Injection

Injection Attack Vectors

Memory Corruption

Cross-Site Scripting

Improper Platform Usage

Task

Insecure Intents

Insecure File Permissions



Insecure Data Storage

Task

Sensitive Data Is Sent to Third Parties

Local storage of Input Validation

Sensitive Data in Backups

Sensitive Data in Memory

Storage for Sensitive Data

Sensitive Data Exposure through Logs

Keyboard Cache being disabled for Text Input Fields

Sensitive Data Disclosure Through the User Interface

Sensitive Information in Auto-Generated Screenshots

Missing Device-Access-Security Policy

Insecure Communication

Task

Data Encryption on the Network

Critical Operations Using Secure Communication Channels

Custom Certificate Stores and Certificate Pinning

Network Security Configuration Settings

Security Provider

Endpoint Identification & Verification



Insecure Authentication

Task

Appropriate Authentication

Weak Stateless (Token-Based) Authentication

Weak OAuth 2.0 Flows

Missing Login Activity and Device Blocking

Confirm Credentials

Weak Biometric Authentication

Weak Stateful Session Management

Session Timeout

Insufficient Cryptography

Task

Insecure and/or Deprecated Cryptographic Algorithms

Common Configuration Issues

Weak Configuration of Cryptographic Standard Algorithms

Weak Key Management

Weak Random Number Generation

Insecure Authorization

Task

Insecure Direct Object References



Client Code Quality

Task

Weaknesses in Third-Party Libraries

Debug Mechanisms

Debugging Symbols

Debugging Code and Verbose Error Logging

Exception Handling

Properly Signed App

Code Tampering

Task

Root Detection

Anti-Debugging Detection

File Integrity Checks

Emulator Detection

Device Binding

Reverse Engineering

Task

Obfuscation

Missing Reverse Engineering Tools Detection

Extraneous Functionality

Task

Hidden Functions



iOS
A single software application that is designed to operate on the iOS operating system.
Testing could involve a development environment or a production phone/device.

Objectives
Objectives ensure that extensive coverage of scope occurs.

Coverage Objectives

Injection

Improper Platform Usage

Insecure Data Storage

Insecure Communication

Insecure Authentication

Insufficient Cryptography

Insecure Authorization

Client Code Quality

Code Tampering

Reverse Engineering

Extraneous Functionality



Guidebooks
Guidebooks provide non-restrictive test cases for testers to review per technology and
scope

Injections

Task

SQL Injection

XML Injection

Injection Attack Vectors

Memory Corruption

Cross-Site Scripting

Improper Platform Usage

Task

Weak Permissions and Export of Sensitive Functionality.



Insecure Data Storage

Task

Sensitive Data Is Sent to Third Parties

Local Data Storage

Sensitive Data in Memory

Sensitive Data in Backups

Sensitive Data in Logs

Sensitive Data Is Exposed via IPC Mechanisms

Sensitive Data Disclosed Through the User Interface

Sensitive Data in the Keyboard Cache

Auto-Generated Screenshots for Sensitive Information

Insecure Communication

Task

Missing Data Encryption on the Network

Ensure that Critical Operations Use Secure Communication Channels

Custom Certificate Stores and Certificate Pinning

Missing Endpoint Identity Verification

Missing App Transport Security



Insecure Authentication

Task

Appropriate Authentication is in Place

Weak Stateless (Token-Based) Authentication

Weak OAuth 2.0 Flows

Local Authentication

Missing Login Activity and Device Blocking

Weak Stateful Session Management

Weak Session Timeout

Insufficient Cryptography

Task

Insecure and/or Deprecated Cryptographic Algorithms

Common Configuration Issues

Configuration of Cryptographic Standard Algorithms

Weak Key Management

Weak Random Number Generation

Insecure Authorization

Task

Insecure Direct Object References



Client Code Quality

Task

Weaknesses in Third-Party Libraries

Debuggable App

Debugging Symbols

Debugging Code and Verbose Error Logging

Exception Handling Weaknesses

Missing Properly Signed App

Code Tampering

Task

Missing Jailbreak Detection

Missing File Integrity Checks

Missing Device Binding

Reverse Engineering

Task

Missing Obfuscation

Extraneous Functionality

Task

Hidden Functionalities



API
In a general sense, an application programming interface (API) is a set of routines, protocols,
or methods used for integration and communication between two or more software
applications.

Objectives
Objectives ensure that extensive coverage of scope occurs.

Coverage Objectives

Injection

Broken Object Level Authorization

Broken User Authentication

Excessive Data Exposure

Lack of Resources & Rate Limiting

Broken Function Level Authorization

Mass Assignment

Security Misconfiguration

Improper Assets Management

Guidebooks
Guidebooks provide non-restrictive test cases for testers to review per technology and
scope

Injections

Task

Client-Supplied Data is not Directly Used or Concatenated to SQL/NoSQL/LDAP queries, OS
commands, XML parsers, and Object Relational Mapping (ORM)/Object Document Mapper (ODM).

Data Coming from External systems (e.g., integrated systems) is Validated, Filtered, or Sanitized by
the API.

Client-Supplied Data is Validated, Filtered, or Sanitized



Broken Object Level Authorization

Task

Insecure Direct Object References

Broken User Authentication

Task

Credential Stuffing

Sensitive information passed in URL

Lack of Validation of the Authenticity of Tokens

Usage of Plain Text, Non-Encrypted, or Weakly Hashed Passwords

Unsigned/Weakly signed JWT tokens

Weak Encryption Keys

Weak Passwords



Excessive Data Exposure

Task

Sensitive Data Returned by API

Reliance on the Client-Side to Filter Sensitive Data

Lack of Resources & Rate Limiting

Task

Lack of Throttling Implemented when Retrieving Resources from the Server and Executing asks on
the Server

Broken Function Level Authorization

Task

Unrestricted Access to Administrative Endpoints

Sensitive Action by Changing HTTP Method

Access to Resources or Unauthorized Information

Mass Assignment

Task

Client-Side Variables Impact on Sensitive Permission-Related Properties

Client-Side Variables Impact on Sensitive Process-Dependent Properties

Client-Side Variables Impact on Sensitive Internal Properties



Security Misconfiguration

Task

Missing Appropriate Security Hardening Across Application Stack

Missing Security Patches

Enabled Unnecessary Features

Missing or Weak TLS Configuration

Lack of Security Headers

Sensitive Information Exposed Through Stack Traces

Improper Assets Management

Task

Old or Unpatched API Versions

Documentation Existence and Accuracy

Lack of Retirement Plan for API Versions.

Missing or Outdated Hosts Inventory

Outdated or Missing Integrated Services Inventory.



External Network
In a general sense, a network is a group of cloud-hosted servers within a range of IPs or with
individual IPs. These networks can be public-facing (external), require special access, or in a
cloud environment.

Objectives
Objectives ensure that extensive coverage of scope occurs.

Coverage Objectives

Network Discovery

Vulnerability Assessment

DNS Checks

Applicable Web Application Pentest Checks

Guidebooks
Guidebooks provide non-restrictive test cases for testers to review per technology and
scope

Network Discovery

Task

TCP port scan discovery

UDP port scan discovery

Service Identification

Operating System Fingerprinting

Google Dorking Discovery



Vulnerability Assessment

Task

Outdated or Vulnerable Software

Account Enumeration and Guessable User Account

Default/Weak Credentials

Internal Services Accessible from the Internet

Insecure TLS Versions and Weak Algorithms/Ciphers

DNS Checks

Task

DNS Cache Poisoning

DNS Cache Snooping

DNS Open Recursion

DNS Zone Transfer

Reverse DNS Name Resolution Discloses Private Network Addresses



Applicable Web Application Pentest Checks

Task

Critical Bugs on identified Web Applications (SQLi, RCE, SSRF etc.)

Bypassing Authentication Schema

Weak authentication on alternative channels

Old, Backup and Unreferenced Files for Sensitive Information

Network/Infrastructure Configuration

Weak Application Platform Configuration

File Extensions Handling for Sensitive Information

Sensitive information sent via unencrypted channels

Information Leakage using Search Engine Discovery

Information Leakage via Webpage Comments and Metadata

Enumerate Applications on Webserver



Internal Network
In a general sense, an internal network refers to the network infrastructure and assets
within an organization's physical premises or private cloud environment. These networks
are not public-facing and require special access privileges to be accessed.

Objectives
Objectives ensure that extensive coverage of scope occurs.

Coverage Objectives

Network Discovery

Vulnerability Assessment

Active Directory Assessment

Privilege Escalation Assessment

Applicable Web Application Pentest Checks

Guidebooks
Guidebooks provide non-restrictive test cases for testers to review per technology and
scope

Network Discovery

Task

TCP port scan discovery

UDP port scan discovery

Service Identification

Operating System Fingerprinting

Internal network topology mapping



Vulnerability Assessment

Task

Outdated or Vulnerable Software

Default/Weak Credentials

Insecure Configurations and Settings

Missing Patches and Updates

Internal Services Accessible from Unauthorized users

Unrestricted File System Access

Sensitive Data Stored on Local Machines

Assessment of SSH, FTP, DNS, Email protocols, CI/CD, NFS, SMB, LDAP, RDP, SNMP, etc.

Active Directory Assessment

Task

Enumeration of Users, Groups and Systems

Assessment of Domain Policies and Permissions

Identification of Misconfigured Active Directory Services

Assessment of Domain Trusts and Relationships

Privilege Escalation Assessment

Task

Exploitation of Misconfigured Services and Applications

Assessment of Weak Credentials and Password Policies

Identification of Unauthorized Access Points and Channels

Assessment of Firewall and Access Control Rules

Lateral Movement and Escalation of Privileges



Applicable Web Application Pentest Checks

Task

Critical Bugs on identified Web Applications through BlackBox Testing (SQLi, RCE, SSRF etc.)

Bypassing Authentication Schema

Weak authentication on alternative channels

Old, Backup and Unreferenced Files for Sensitive Information

Network/Infrastructure Configuration

Weak Application Platform Configuration

File Extensions Handling for Sensitive Information

Information Leakage via Webpage Comments and Metadata

Enumerate Applications on Webserver



Application Pentest for AWS

This is an “add-on” methodology if your web, mobile, or API-based application is hosted on

AWS. You might have an array of services that support the platform like EC2, RDS, S3,

Lambda, etc. This assessment will largely resemble a traditional application pentest, but

requires special consideration for specific AWS services used within your stack.

Objectives
Objectives ensure that extensive coverage of scope occurs.

Coverage Objectives

API Gateway: HTTP Verb Tampering

API Gateway: Improper Access Control

DynamoDB: Injection

EC2: Local File Read / Local File Inclusion

EC2: Secrets Metadata

IAM Roles: Improper Access Control

Lambda: Injection & Pivoting

Lambda: Legacy Endpoint

Public Services or Resources

Route53/S3/EC2: DNS Misconfiguration & Subdomain Takeovers

S3 Bucket: Information Disclosure

S3 Bucket: Read Misconfiguration

S3 Bucket: Write Misconfiguration

Sensitive Data Exposure and Information Exposure Through Debug Information

Using Components with Known Vulnerabilities



Reporting

Philosophy

Customers must be equipped with deliverables that are relevant to their stakeholders.

Outcome

Empower customers with thorough documentation for both internal and external
customers that demonstrates relevant information about the engagement activities
and the unbiased opinion of HackerOne.


