HackerOne Pentest Methodology

Table of Contents

Executive Summary
Scoping
Phases

Project Alignment

Attack Surface Discovery

Attack Surface Analysis
Testing
Reporting
Retesting
Project Alignment
Philosophy
Outcome
Methodologies
Attack Surface Discovery
Philosophy
Outcome
Methodologies
Attack Surface Analysis
Philosophy
Outcome
Methodologies
Testing
Philosophy
Outcome
Methodologies
Web
Android
i0S
API
External Network
Internal Network

Network Segmentation Testing

AWS Security Configuration Review

Azure Security Config Review

Google Cloud Platform Security Config Review

© © © © 000 W 00 N N ~NOO O O O M

a b B WO W OWMNMNDN 2L 4 4 4w 4 -
_ N WO NPdPOO 20 BB DNDNDNMNDNMDD

l1ackerone

Desktop Applications / Executables
Application Pentest for AWS (Add-on)
Large Language Model (LLM) Applications (Add-on)
Large Language Model (LLM) Applications (Standalone)
Electron Desktop Applications (Add-on)

Reporting

55
58
60
63
71
73

l1ackerone

Executive Summary

This document showcases HackerOne pentesters' methodologies throughout the
pentest engagement to ensure comprehensive and deep coverage. It
demonstrates how HackerOne assesses the effort required to perform thorough
security engagements against customer technologies.

HackerOne developed this document by consulting internal and external industry
experts, leveraging industry standards, evaluating thousands of time-bound and
long-term global client programs, and reviewing millions of vulnerability reports.
Through constant feedback and engagement, HackerOne continues to mature its
methodologies in effort and approach to offer its customers maximum security
assurance.

l1ackerone

Scoping

HackerOne understands that no asset is the same; therefore, no pentest should
be scoped using generic assumptions. Applying a one-size-fits-all model to
pentests risks the quality and completion of the assessment. HackerOne has
developed a scoping process that balances cumbersome traditional scoping
processes with blanket figures.

In a customer-facing questionnaire, customers are asked to provide high-level
details about the assets being engaged and relevant testing expectations. Once
this information is gathered, HackerOne leverages a calculation process based
on historical data to determine the proper product offering for its customers.
HackerOne also uses this information to determine if and how pentesters can
access the targets remotely. This process ensures pentesters can conduct quality
work with reasonable expectations and customers are provided a thorough
engagement bolstered by security assurance.

l1ackerone

Phases

HackerOne’s phased testing approach provides a series of guideposts for testers
to ensure quality control and checkpoints throughout the engagement. This
approach opens up opportunities to review progress and proactively
communicate across parties to address questions as they come up. Customers
gain increased awareness of testing activities to ensure these activities are
completed in order. In this phased approach, testers understand the assets
in-scope, assess the entire attack surface, and dive into discovered attack
vectors using HackerOne-created guides to empower their creativity.

Scope Attack Attack Real-time
< Pentester " :
and Project Surface Surface ; and Final Retesting
: : . Testing :
Alignment Analysis Discovery Reporting
Our team Assigned Pentesters Pentesters conduct Instant findings Pentesters validate
collaborates with pentesters map the attack active testing and a final report remediations,
customers to discover potential surface through following provide proof of confirm that
align objectives, vulnerabilities, reconnaissance guidelines for testing and vulnerabilities are
testing scope, prioritize vectors efforts coverage, utilizing demonstrate successfully
and restrictions. based on risk. and research. creativity. assurance. resolved.

Project Alignment

HackerOne and the customer work closely to ensure they align on goals, Key
Performance Indicators (KPI), and restrictions. Based on this understanding,
HackerOne customizes testing guidance and assigns pentesters based on their
skill sets and experience.

Attack Surface Discovery

Pentesters confirm access to all in-scope assets and gain an initial understanding
of the attack surface they are asked to engage in or that could present avenues
into it.

Attack Surface Analysis

Pentesters seek to identify potential attack vectors across the identified surface,
prioritizing attack vectors based on their suspected ease of exploitation and
potential impact.

l1ackerone

Testing

Pentesters leverage the groundwork from previous phases to begin their assault
against the attack surface, demonstrating the customer’s security risk or
exposure to a malicious actor. The pentest team uses a combination of
automated and manual attacks to provide both breadth and depth of testing.

Reporting

Findings are reported in real-time through the platform, and customers can send
them to issue trackers and vulnerability management software using built-in
integrations.

Customers are provided with deliverables that empower them to communicate
issues to internal teams, provide their own customers with proof of testing, review
the state of security for scoped assets, and assure auditors of penetration
testing.

Retesting

Pentesters review the remediations that customers implement to fix discovered
vulnerabilities to confirm that the system has been successfully patched and is
no longer vulnerable to the original findings. Customers have a window of time to
request free retesting for the identified findings.

l1ackerone

Project Alignment

Philosophy

It is always best to launch any project/engagement with alignment and a clear
understanding of objectives rather than attempting to turn a moving train.

Outcome

There should be complete alignment on what assets are to be tested, how
pentesters can access the targets remotely, how they are to be tested, and any
restrictions regarding testing.

Methodologies

HackerOne uses an adaptive approach that meets customers’ needs while
maintaining a standard of excellence. It leverages team collaboration tools,
media, meetings, training, and in-platform guidance and checklists. During
testing, HackerOne pentesters follow asset-specific checklists for each asset in
scope. The HackerOne checklists are based on industry-standard methodologies
and security frameworks, such as OWASP Top 10" standards (web, API, and
mobile), CWE guidance from MITRE?, direct input from the AWS Security team,
and the HackerOne Top 10° list.

" OWASP Top 10 Lists - https://owasp.org/Top10/
2 MITRE - https://cwe.mitre.org/

3 HackerOne Top 10 List - https://www.hackerone.com/top-ten-vulnerabilities

l1ackerone

https://www.hackerone.com/top-ten-vulnerabilities
https://cwe.mitre.org/
https://owasp.org/Top10/

Attack Surface Discovery

Philosophy

Before any active attacks, pentesters must first understand and verify the entire
surface through Open Source Intelligence (OSINT) Gathering and
Reconnaissance.

Outcome

Pentesters are aware of the entire attack surface, including its perimeter, available
access, and the size of the targeted assets when applicable.

Methodologies

Standard

Scope Review

Company Research

Web Application

Application mapping

Understand the business logic
Identify Core features to test
Identify input fields (injection points)
Brute Forcing directories

Google Dorking

Wayback machine/archive.org

Public Disclosures

Mobile Applications

l1ackerone

Built-in Protections

Application mapping

Understand the business logic

Identify Core features to test

Identify input fields (injection points)

Looking for old versions of the same application
Google Dorking

Wayback machine/archive.org

Extract static strings and URLs from .apk or .ipa

Public Disclosures

Network

Quick TCP Port scanning to find live IPs
Full TCP port scanning

UDP port scanning

Nmap scripts

Shodan queries

Google Dorking

Wayback machine/archive.org (in relation to external network testing)

API
APl mapping
Read API documentation

Understand the business logic

l1ackerone

http://archive.org

Identify Core endpoints to test
Public Disclosures
Versioning / Identify legacy API versions

Identify user interfaces (such as mobile apps) using this API

Desktop Applications / Executables

Built-in Protections

Application mapping

Understand the business logic

Identify Core features to test

Identify input fields (injection points)

Looking for old versions of the same application
Google Dorking

Wayback machine/archive.org

Extract static strings and URLs from the binary

Public Disclosures and CVEs

l1ackerone

Attack Surface Analysis

Philosophy
Before engaging an attack vector, pentesters should discover possible attack

vectors and entry points.

Outcome

Pentesters have an in-depth understanding of potential attack vectors and entry points
within the attack surface and prioritize active testing toward the most promising
observations.

Methodologies

Web Application

Automated Scanning
Focused Scanning

Findings Analysis

Mobile Application

Static Analysis
Integration Analysis
Automated Scanning
Focused Scanning

Findings Analysis

Network

l1ackerone

Automated Scanning
Focused Scanning

Findings Analysis

l1ackerone

Testing

Philosophy

Give pentesters the freedom to explore the attack surface utilizing their unique skills and
expertise while providing coverage and consistency from each engagement.

Outcome

Testers complete testing against key objective areas developed for each asset
technology. They are empowered with guidebooks for each objective that assist in
ensuring the depth of their testing but do not confine it to prescriptive requirements.

Methodologies

Our methodology emphasizes structure and adaptability for meaningful assessments.
Utilizing the insights gained from prior discovery and analysis of the attack surface, the
testers probe weaknesses, follow potential attack paths, and adapt tactics based on
system behaviour and findings. This adaptive approach successfully uncovers both
existing vulnerabilities and novel attack vectors. By combining structured goals with
expert analysis, our testing phase provides actionable insights that strengthen
organizations' security against real-world threats. Supported methodologies include:

l1ackerone

Web

A single web application is a contained codebase that typically interfaces with the end-user,
passing commands over the internet and connecting Ul with a web server. A web application is

not a wildcard domain but a single fully-qualified domain name [FQDN]. Testing can be
conducted internally or externally.

Objectives

Objectives ensure that extensive scope coverage occurs.

Coverage Objectives

Broken Access Control

Cryptographic Failures

Injection

Insecure Design

Security Misconfiguration

Vulnerable and Outdated Components

Identification and Authentication Failures

Software and Data Integrity Failures

Security Logging and Monitoring Failures

Server-Side Request Forgery (SSRF)

Guidebooks

Guidebooks provide non-restrictive test cases for testers to review per technology and scope.

Broken Access Control

Task

Directory Traversal File Include

Bypassing Authorization Schema

l1ackerone

Privilege Escalation

Insecure Direct Object References

OAuth Weaknesses

OAuth Authorization Server Weaknesses

OAuth Client Weaknesses

Business Logic Data Validation

Remote File Inclusion

Cryptographic Failures

Task

Weak Transport Layer Security

Padding Oracle

Sensitive Information Sent via Unencrypted Channels

Weak Encryption

Injection

Task

HTTP Parameter Pollution

SQL Injection

ORM Injection

Code Injection

Command Injection

Buffer Overflow

HTTP Splitting Smuggling

Server Side Template Injection

Reflected Cross-Site Scripting

l1ackerone

Stored Cross-Site Scripting

DOM-based Cross-Site Scripting

HTML Injection

Cross-Site Flashing

Blind XSS

Insecure Design

Task

Privacy-related Controls in SDLC

Secure Design Patterns in Repeated Components

Adequate Threat Modeling: Critical Authentication, Access Control, Business Logic, Key Flows

Plausibility Checks

Adequate Handle of Misuse Cases

Adequate System and Network Layering

Adequate Segregation of Tenants

Adequate Resource Consumption Limits

Security Misconfiguration

Task

Network Infrastructure Configuration

Application Platform Configuration

File Extensions Handling for Sensitive Information

Review Old, Backup, and Unreferenced Files for Sensitive Information

Enumerate Infrastructure and Application Admin Interfaces

HTTP Methods

HTTP Strict Transport Security

RIA Cross Domain Policy

l1ackerone

File Permission

Subdomain Takeover

Cloud Storage

Content Security Policy (CSP)

Path Confusion

Information Leakage (Search Engine Discovery and Recon)

Review Webpage Comments and Metadata for Information Leakage

Review Webserver Metafiles for Information Leakage

Clickjacking

XML Injection

Vulnerable and Outdated Components

Task

Enumerate Applications on Webserver

Map Application Architecture

Identification and Authentication Failures

Task

Credentials Transported over an Encrypted Channel

Default Credentials

Weak Lock-Out Mechanisms

Bypassing Authentication Schema

Vulnerable Remember Password

Browser Cache Weaknesses

Weak Password Policy

Weak Security Question Answer

l1ackerone

Weak Password Change or Reset Functionalities

Weaker Authentication in Alternative Channel

Account Enumeration and Guessable User Account

Cookies Attributes

Session Fixation

Logout Functionality

Session Timeout

Session Puzzling

Software and Data Integrity Failures

Task

Altered Software or Data (Use of Digital Signatures and Similar Mechanisms)

Consumption of Trusted Dependencies

Dependency-Check SDLC Tooling

Code & Configuration Review Processes

CI/CD Pipeline Segregation, Configuration, and Access Control

Integrity of Serialized Data

Insecure Deserialization

Security Logging and Monitoring Failures

Task

Improper Error Handling

Error Code

Stack Traces

Server-Side Request Forgery (SSRF)

Task

l1ackerone

Server-Side Request Forgery

Circumventing of Common SSRF Defenses

Blind SSRF

SSRF Vulnerabilities in Hidden Attack Surfaces

l1ackerone

Android

A single software application designed to operate on the Android operating system. Testing

could involve a development environment or a production phone/device.

Objectives

Objectives ensure that extensive scope coverage occurs.

Coverage Objectives

Injection

Improper Platform Usage

Insecure Data Storage

Insecure Communication

Insecure Authentication

Insufficient Cryptography

Insecure Authorization

Client Code Quality

Code Tampering

Reverse Engineering

Extraneous Functionality

Guidebooks

Guidebooks provide non-restrictive test cases for testers to review per technology and scope.

Injections

Task

SQL Injection

l1ackerone

XML Injection

Injection Attack Vectors

Memory Corruption

Cross-Site Scripting

Improper Platform Usage

Task

Insecure Intents

Insecure File Permissions

Insecure Data Storage

Task

Sensitive Data Is Sent to Third Parties

Local storage of Input Validation

Sensitive Data in Backups

Sensitive Data in Memory

Storage for Sensitive Data

Sensitive Data Exposure through Logs

Keyboard Cache being disabled for Text Input Fields

Sensitive Data Disclosure Through the User Interface

Sensitive Information in Auto-Generated Screenshots

Missing Device-Access-Security Policy

Insecure Communication

Task

Data Encryption on the Network

Critical Operations Using Secure Communication Channels

l1ackerone

Custom Certificate Stores and Certificate Pinning

Network Security Configuration Settings

Security Provider

Endpoint Identification & Verification

Insecure Authentication

Task

Appropriate Authentication

Weak Stateless (Token-Based) Authentication

Weak OAuth 2.0 Flows

Missing Login Activity and Device Blocking

Confirm Credentials

Weak Biometric Authentication

Weak Stateful Session Management

Session Timeout

Insufficient Cryptography

Task

Insecure and/or Deprecated Cryptographic Algorithms

Common Configuration Issues

Weak Configuration of Cryptographic Standard Algorithms

Weak Key Management

Weak Random Number Generation

Insecure Authorization

Task

Insecure Direct Object References

l1ackerone

Client Code Quality

Task

Weaknesses in Third-Party Libraries

Debug Mechanisms

Debugging Symbols

Debugging Code and Verbose Error Logging

Exception Handling

Properly Signed App

Code Tampering

Task

Root Detection

Anti-Debugging Detection

File Integrity Checks

Emulator Detection

Device Binding

Reverse Engineering

Task

Obfuscation

Missing Reverse Engineering Tools Detection

Extraneous Functionality

Task

Hidden Functions

l1ackerone

l1ackerone

i0S

A single software application designed to operate on the iOS operating system. Testing could

involve a development environment or a production phone/device.

Objectives

Objectives ensure that extensive scope coverage occurs.

Coverage Objectives

Injection

Improper Platform Usage

Insecure Data Storage

Insecure Communication

Insecure Authentication

Insufficient Cryptography

Insecure Authorization

Client Code Quality

Code Tampering

Reverse Engineering

Extraneous Functionality

Guidebooks

Guidebooks provide non-restrictive test cases for testers to review per technology and scope.

Injections

Task

SQL Injection

XML Injection

l1ackerone

Injection Attack Vectors

Memory Corruption

Cross-Site Scripting

Improper Platform Usage

Task

Weak Permissions and Export of Sensitive Functionality.

Insecure Data Storage

Task

Sensitive Data Is Sent to Third Parties

Local Data Storage

Sensitive Data in Memory

Sensitive Data in Backups

Sensitive Data in Logs

Sensitive Data Is Exposed via IPC Mechanisms

Sensitive Data Disclosed Through the User Interface

Sensitive Data in the Keyboard Cache

Auto-generated screenshots for Sensitive Information

Insecure Communication

Task

Missing Data Encryption on the Network

Ensure that Critical Operations Use Secure Communication Channels

Custom Certificate Stores and Certificate Pinning

Missing Endpoint Identity Verification

l1ackerone

Missing App Transport Security

Insecure Authentication

Task

Appropriate Authentication is in Place

Weak Stateless (Token-Based) Authentication

Weak OAuth 2.0 Flows

Local Authentication

Missing Login Activity and Device Blocking

Weak Stateful Session Management

Weak Session Timeout

Insufficient Cryptography

Task

Insecure and/or Deprecated Cryptographic Algorithms

Common Configuration Issues

Configuration of Cryptographic Standard Algorithms

Weak Key Management

Weak Random Number Generation

Insecure Authorization

Task

Insecure Direct Object References

Client Code Quality

Task

l1ackerone

Weaknesses in Third-Party Libraries

Debuggable App

Debugging Symbols

Debugging Code and Verbose Error Logging

Exception Handling Weaknesses

Missing Properly Signed App

Code Tampering

Task

Missing Jailbreak Detection

Missing File Integrity Checks

Missing Device Binding

Reverse Engineering

Task

Missing Obfuscation

Extraneous Functionality

Task

Hidden Functionalities

l1ackerone

AP

Generally, an Application Programming Interface (API) is a set of routines, protocols, or methods
used for integration and communication between two or more software applications.

Objectives

Objectives ensure that extensive scope coverage occurs.

Coverage Objectives

Broken Object Level Authorization

Broken Authentication

Broken Object Property Level Authorization

Unrestricted Resource Consumption

Broken Function Level Authorization

Unrestricted Access to Sensitive Business Flows

Server-Side Request Forgery (SSRF)

Security Misconfiguration

Improper Inventory Management

Unsafe Consumption of APIs

Guidebooks

Guidebooks provide non-restrictive test cases for testers to review per technology and scope.

Broken Object Level Authorization

Task

Directory Traversal / File Include

Bypassing Authorization Schema

Privilege Escalation

l1ackerone

Insecure Direct Object References (IDOR)

Broken Authentication

Task

Credential Stuffing

Lockout Mechanisms to Prevent Brute-force Attacks

Weak Passwords

Sensitive Authentication Details in URL Paths

Credential Updates Without Password Confirmation

Token Authenticity Validation

Accepting of Unsigned / Weakly Signed JSON Web Tokens (JWTs)

Unvalidated JWT Expiration Dates

Unsafe Password Transmission: Plaintext, Non-encrypted, Weakly Hashed

Weak Encryption Keys

[Microservices] Cannot Access Other Microservices Without Authentication

[Microservices] Weak or Predictable Tokens for Authentication

Broken Object Property Level Authorization

Task

Sensitive Object-Level Details Exposed via APl Endpoint

Unauthorized Manipulation of Object Properties via APl Endpoint

Unrestricted Resource Consumption

Task

Missing or Inappropriately Configured Execution Timeouts

Missing or Inappropriately Configured Maximum Allocable Memory

Missing or Inappropriately Configured Maximum Number of File Descriptors

l1ackerone

Missing or Inappropriately Configured Maximum Number of Processes

Missing or Inappropriately Configured Maximum Upload File Size

Missing or Inappropriately Configured Number of Operations in a Single APl Request

Missing or Inappropriately Configured Records Per Page Returned in a Single Response

Missing or Inappropriately Configured Third-party Service Providers' Spending Limit

Broken Function Level Authorization

Task

Privilege Escalation

Insecure Direct Object References (IDOR)

Forced Browsing / Predictable Resource Location

Unrestricted Access to Sensitive Business Flows

Task

Scalping

Scamming

Sniping

Expediting

Server Side Request Forgery (SSRF)

Task

Server-Side Request Forgery (SSRF)

Security Misconfiguration

Task

Missing Appropriate Security Hardening Across Application Stack

Missing Security Patches

l1ackerone

Enabled Unnecessary Features

Missing or Weak Transport Layer Security (TLS) Configuration

Lack of Security Headers

Sensitive Information Exposed Through Stack Traces

Missing or Misconfigured Cross-Origin Resource Sharing (CORS) Policy

Missing or Misconfigured Cache-Control Directives

Improper Inventory Management

Task

Old or Unpatched API Versions

Documentation Existence and Accuracy

Lack of Retirement Plan for API Versions

Missing or Outdated Hosts Inventory

Outdated or Missing Integrated Services Inventory

Unsafe Consumption of APIs

Task

Interactions with Other APIs Over an Unencrypted Channel

Data from Other APIs processed without Validation / Sanitization

Blind Follow of Redirections

Third-party Services Responses Processed Without Limit

Interactions with Third-party Services Without Timeouts

l1ackerone

External Network

In a general sense, a network is a group of cloud-hosted servers within a range of IPs or with
individual IPs. These networks can be public-facing (external), require special access, or be in a
cloud environment.

Objectives

Objectives ensure that extensive scope coverage occurs.

Coverage Objectives

Network Discovery

Vulnerability Assessment

Domain Name System (DNS) Checks

Applicable Web Application Pentest Checks

Guidebooks

Guidebooks provide non-restrictive test cases for testers to review per technology and scope.

Network Discovery

Task

TCP port scan discovery

UDP port scan discovery

Service ldentification

Operating System Fingerprinting

Google Dorking Discovery

Vulnerability Assessment

Task

l1ackerone

Outdated or Vulnerable Software

Account Enumeration and Guessable User Account

Default/Weak Credentials

Internal Services Accessible from the Internet

Insecure TLS Versions and Weak Algorithms/Ciphers

DNS Checks

Task

DNS Cache Poisoning

DNS Cache Snooping

DNS Open Recursion

DNS Zone Transfer

Reverse DNS Name Resolution Discloses Private Network Addresses

Applicable Web Application Pentest Checks

Task

Critical Bugs on identified Web Applications (SQLi, RCE, SSRF, etc.)

Bypassing Authentication Schema

Weak authentication on alternative channels

Old, Backup, and Unreferenced Files for Sensitive Information

Network/Infrastructure Configuration

Weak Application Platform Configuration

File Extensions Handling for Sensitive Information

Sensitive information sent via unencrypted channels

Information Leakage using Search Engine Discovery

Information Leakage via Webpage Comments and Metadata

l1ackerone

Enumerate Applications on Webserver

l1ackerone

Internal Network

Generally, an internal network refers to the network infrastructure and assets within an
organization's physical premises or private cloud environment. These networks are not
public-facing and require special access privileges to be accessed.

Objectives

Objectives ensure that extensive scope coverage occurs.

Coverage Objectives

Network Discovery

Vulnerability Assessment

Active Directory Assessment

Privilege Escalation Assessment

Applicable Web Application Pentest Checks

Guidebooks

Guidebooks provide non-restrictive test cases for testers to review per technology and scope.

Network Discovery

Task

TCP port scan discovery

UDP port scan discovery

Service ldentification

Operating System Fingerprinting

Internal network topology mapping

Vulnerability Assessment

l1ackerone

Outdated or Vulnerable Software

Default/Weak Credentials

Insecure Configurations and Settings

Missing Patches and Updates

Internal Services Accessible from Unauthorized Users

Unrestricted File System Access

Sensitive Data Stored on Local Machines

Assessment of SSH, FTP, DNS, Email protocols, CI/CD, NFS, SMB, LDAP, RDP, SNMP, etc.

Active Directory Assessment

Task

Enumeration of Users, Groups and Systems

Assessment of Domain Policies and Permissions

Identification of Misconfigured Active Directory Services

Assessment of Domain Trusts and Relationships

Privilege Escalation Assessment

Task

Exploitation of Misconfigured Services and Applications

Assessment of Weak Credentials and Password Policies

Identification of Unauthorized Access Points and Channels

Assessment of Firewall and Access Control Rules

Lateral Movement and Escalation of Privileges

Applicable Web Application Pentest Checks

Task

l1ackerone

Critical Bugs on identified Web Applications through BlackBox Testing (SQLi, RCE, SSRF, etc.)

Bypassing Authentication Schema

Weak authentication on alternative channels

Old, Backup, and Unreferenced Files for Sensitive Information

Network/Infrastructure Configuration

Weak Application Platform Configuration

File Extensions Handling for Sensitive Information

Information Leakage via Webpage Comments and Metadata

Enumerate Applications on Webserver

l1ackerone

Network Segmentation Testing

Generally, a network segmentation test validates network segmentation controls with a focus on
isolation between network security classifications.

This methodology is based on industry standards for network isolation and the controls defined
in Payment Card Industry Data Security Standard (PCI DSS) segmentation requirements.

This includes:

Host Discovery

Port Scanning

Testing for Network Broadcast Listeners

Firewall and Access Controls

Bi-Directional Testing

Cloud / Container Specific Network Segmentation Tests (If Applicable)

Note: It is the customer’s responsibility to define the scope and the placement of a Kali Linux
Virtual Machine (VM) inside the correct network segment from which HackerOne will perform
testing.

Some tools that may be utilized during the test include Nmap, Rustscan, Naabu, Masscan, etc.

Objectives

Objectives ensure that extensive scope coverage occurs.

Coverage Objectives

Host Discovery

Port Scanning

Firewall and Access Controls

Cloud / Container Specific Network Segmentation Tests (If Applicable)

l1ackerone

Guidebooks

Host Discovery

Task

Testing for live hosts in existing network segment

Scan IP ranges / subnets for live hosts

Port Scanning

Task

Full TCP port scans (1-65535)
Full UDP port scans (1-65535)
Service scans

IPv6 port scanning

Testing for Network Broadcast Listeners

Task

Monitor for Broadcast traffic

LLMNR/NetBIOS Poisoning Detection

Firewall and Access Controls

Task

Tests for commonly restricted protocols
Tests using source port manipulation

Firewall / IDS evasion tests

Guidebooks provide non-restrictive test cases for testers to review per technology and scope.

l1ackerone

Nmap scripts for firewall bypass and web filtering

Bi-Directional Testing

Task

All of the above tests to confirm access from non-CDE networks to CDE segments and vice-versa

Cloud Environment Specific Network Segmentation Tests (If Applicable)

Task

All of the above tests from outside of the environment looking into your cloud environment

Note: Traditional methods of network segmentation tests are not possible in cloud
environments. The network segmentation testing methodology includes tests related to host
discovery, port scanning, and firewall and access controls from outside of the environment
looking into the customer’s cloud environment. HackerOne recommends performing a cloud
configuration review of specific cloud configurations and container isolation if specific
segmentation checks for those services are required.

l1ackerone

AWS Security Configuration Review

Ensure comprehensive coverage of AWS security configurations and compliance with best
practices.

The test primarily focuses on the AWS services and configurations critical to the organization’s
cloud infrastructure security.

This includes:

Identity and Access Management (IAM)
Amazon S3

AWS Config

CloudTrail

EC2

RDS

VPC

Some tools that may be utilized during the test include Prowler, ScoutSuite, and Nessus.

Objectives
Objectives ensure that extensive scope coverage occurs.

Coverage Objectives

Identity and Access Management

EC2

Logging

Monitoring

Networking

Storage

Database

Key Management

l1ackerone

Guidebooks

Guidebooks provide non-restrictive test cases for testers to review per technology and scope.

Identity and Access Management

Task

IAM policies should not allow full "*" administrative privileges.
IAM users' access keys should be rotated every 90 days or less.
IAM root user access key should not exist.
MFA should be enabled for all IAM users that have a console password.
Hardware MFA should be enabled for the root user.
MFA should be enabled for the root user.
Ensure the |AM password policy requires a minimum password length of 14 or greater.
Ensure the IAM password policy prevents password reuse.

Ensure a support role has been created to manage incidents with AWS Support.

IAM user credentials unused for 45 days should be removed

EC2 Amazon Machine Images (AMI) are inaccessible to all AWS accounts.

Logging

Task

CloudTrail should be enabled and configured with at least one multi-region trail that includes read
and write management events.

CloudTrail should have encryption at rest enabled. |

l1ackerone

CloudTrail log file validation should be enabled.
CloudTrail trails should be integrated with Amazon CloudWatch Logs.
Ensure the S3 bucket used to store CloudTrail logs is not publicly accessible.

Ensure S3 bucket access logging is enabled on the CloudTrail S3 bucket.

CloudTrail should be enabled and configured with at least one multi-region trail that includes read
and write management events.

Monitoring

Task

A log metric filter and alarm should exist for usage of the "root" user.
Ensure a log metric filter and alarm exist for IAM policy changes.
Ensure a log metric filter and alarm exist for CloudTrail AWS Configuration changes.

Ensure a log metric filter and alarm exist for AWS Management Console authentication failures.

Ensure a log metric filter and alarm exist for disabling or scheduled deletion of customer-managed
keys.

Ensure a log metric filter and alarm exist for S3 bucket policy changes.
Ensure a log metric filter and alarm exist for AWS Config configuration changes.
Ensure a log metric filter and alarm exist for security group changes.
Ensure a log metric filter and alarm exist for changes to Network Access Control Lists (NACL).
Ensure a log metric filter and alarm exist for changes to network gateways.

Ensure a log metric filter and alarm exist for route table changes.

Ensure a log metric filter and alarm exist for VPC changes.

Networking

Task

VPC default security groups should not allow inbound or outbound traffic. |

VPC flow logging should be enabled in all VPCs. |

l1ackerone

Network ACLs should not allow ingress from 0.0.0.0/0 to port 22 or port 3389.

Storage

Task

S3 Block Public Access setting should be enabled.
S3 buckets should require requests to use Secure Socket Layer.
S3 Block Public Access setting should be enabled at the bucket level.

S3 general-purpose buckets should have MFA delete enabled.

Database

Task

RDS DB instances should have encryption at rest enabled.

Key Management

Task

AWS Key Management Should be enabled

KMS key rotation feature should be enabled for all Customer Master Keys (CMK).

KMS master keys should not be publicly accessible.

l1ackerone

Azure Security Config Review

Ensure comprehensive coverage of Azure security configurations and compliance with best
practices.

The methodology is based on the best security practices defined in the CIS Microsoft Azure
Foundations and the security pillar of the Azure well-architected framework. The test primarily
focuses on the Azure services and configurations critical to the organization’s cloud
infrastructure security.

This includes:

Entra ID

App Service

Virtual Machines
Storage Accounts
Virtual Networks
Database Services
Logging and Monitoring
Defender

Azure Key Vault

Some tools that may be utilized during the test include Prowler, ScoutSuite, and Nessus.

Objectives
Objectives ensure that extensive scope coverage occurs.

Coverage Objectives

Entra ID

App Service

Virtual Machines

Storage Accounts

Virtual Networks

Database Services

Logging and Monitoring

Defender

l1ackerone

Azure Key Vault

Guidebooks

Guidebooks provide non-restrictive test cases for testers to review per technology and scope.

Entra ID

Task

MFA should be enabled for Windows Azure Service Management API
Security Defaults should be enabled on Microsoft Entra ID
MFA should be enabled for all privileged and non-privileged users

Security group creation should be restricted to administrators only

Guest user's access restrictions should be set to properties and memberships of their own directory|
objects

Non-admin users should be restricted from creating tenants and registering third-party applications

Microsoft 365 group creation should be restricted to administrators only

App Service

Task

App Service Authentication should be set up for apps in Azure App Service
FTP and FTPS deployments should be disabled for Azure Functions
Logging for Azure AppService 'HTTP logs' should be enabled
Web App should redirect All HTTP traffic to HTTPS in Azure App Service
Azure Functions should not be publicly accessible
Azure functions should not be configured with an identity with admin privileges

The latest version of runtime software should be used

Azure functions should be configured to use access keys

l1ackerone

Virtual Machines

Task

Microsoft Azure virtual machines (VMs) should be configured to use managed disk volumes

VM-managed disk volumes (OS and data disk volumes) should be encrypted with a managed Key
(CMK)

Unattached disks in the subscription should be encrypted with Customer Managed Key (CMK)

Storage

Task

Public access should be disabled for all blob containers
Shared Access Signature (SAS) tokens should be set to expire within an hour

Private endpoints should be configured for Microsoft Azure Storage accounts

Azure Storage accounts should use Customer Managed Keys (CMKs) instead of Microsoft Managed
Keys

Storage account should be configured to deny access to traffic from all networks (including Internet
traffic) to limit access

Virtual Networks

Task

Network watcher and virtual network flow logging should be enabled
Network Security Groups (NSGs) should not allow unrestricted access (0.0.0.0/0) on UDP ports

Network security groups (NSGs) should not allow ingress from 0.0.0.0/0 to port 22 or port 3389

Database Services

Task

Auditing should be enabled for SQL server

SSL connection should be enforced on PostgreSQL

l1ackerone

Server logging parameters should be enabled for PostgreSQL Database Server

SQL server's TDE protector should be encrypted with Customer Managed Key (CMK)

Logging and Monitoring

Task

Activity Log Alert should exist for changes to security policies, network security groups, security
solutions, and SQL firewall rules.

Logging for Azure Key Vault should be enabled

Defender

Task

Azure Defender should be enabled for servers, App Service, SQL databases, Storage Accounts,
and other services in use

Latest OS patches for all virtual machines should be applied ('Apply system updates' status
should be 'Completed')

Azure Key Vault

Task

Automatic key rotation should be enabled within Azure Key Vault

Azure Key Vault logging should be enabled

Role Based Access Control should be enabled for Azure Key Vault

Private Endpoints should be used for Azure Key Vault

l1ackerone

Google Cloud Platform Security Config Review

Ensure comprehensive coverage of Google Cloud Platform security configurations and
compliance with best practices.

The methodology is based on the best security practices defined in the CIS Google Cloud
Platform Foundations and general Google Cloud security best practices. The test primarily
focuses on the Google Cloud services and configurations critical to the organization’s cloud
infrastructure security.

This includes:

Identity and Access Management
Logging and Monitoring
Networking

Virtual Machines

Storage

Database

BigQuery

Key Management System (KMS)
Google Container Registry (GCR)
Google Kubernetes Engine (GKE)

Some tools that may be utilized during the test include Prowler, ScoutSuite, and Nessus.

Objectives
Objectives ensure that extensive scope coverage occurs.

Coverage Objectives

Identity and Access Management

Logging and Monitoring

Networking

Virtual Machines

Storage

Database Services

BigQuery

l1ackerone

Key Management System (KMS)

Google Container Registry (GCR)

Google Kubernetes Engine (GKE)

Guidebooks

Guidebooks provide non-restrictive test cases for testers to review per technology and scope.

Identity and Access Management

Task

Ensure Multi-Factor Authentication is Enabled for All Non-Service Accounts
Ensure Service Account External Keys are Rotated Within 90-Day Intervals
Ensure Service Accounts Operate Without Administrative Privileges
Ensure Service Accounts Utilize Only GCP-Managed Keys

Ensure User-Managed Service Account Keys Undergo 90-Day Rotation Cycles

Ensure Project-Level IAM Policies Exclude Service Account User and Token Creator Role
Assignments

Ensure API Keys Exist Exclusively for Services in Active Use
Ensure API Keys Follow a 90-Day Rotation Schedule

Ensure APl Keys Maintain Restrictions to Required APIs Only

Logging and Monitoring

Task

Ensure That Cloud Audit Logging Is Configured Properly

Ensure Log Metric Filters and Alerts Are Configured to Monitor Critical Configuration Changes
Including Audit Settings, Storage IAM Permissions, Custom Roles, Project Ownership, SQL
Instances, VPC Firewall Rules, VPC Networks, and VPC Routes

Ensure Log Entry Export Utilizes at Least One Configured Sink

l1ackerone

Ensure That Google Cloud Audit Logs Feature Is Configured To Track All GCP Services And User
Activities

Networking

Task

Ensure That SSH, and RDP Access Is Restricted From the Internet
Ensure that VPC Flow Logs is Enabled for Every Subnet in a VPC Network
Ensure That the Default Network Does Not Exist in a Project

Ensure That DNSSEC Is Enabled for Cloud DNS

Virtual Machines

Task

Ensure Compute Instances Are Not Configured To Use Default Service Account
Ensure App Engine Applications Enforce HTTPS-Only Connections

Ensure That Compute Instances Do Not Have Public IP Addresses

Ensure "Block Project-wide SSH Keys" Setting is Enabled for VM Instances

Storage

Task

Ensure That Cloud Storage Bucket Is Not Anonymously or Publicly Accessible |

Ensure That Cloud Storage Buckets Have Uniform BucketLevel Access Enabled |

Database Services

Task

Ensure That a MySQL Instance Does Not Allow Anyone To Connect With Administrative Privileges

l1ackerone

Ensure That Cloud SQL Database Instances Do Not Have Public IP Addresses

BigQuery

Task

Ensure BigQuery tables and datasets are encrypted with Customer-Managed Keys (CMKs)

Ensure That BigQuery Datasets Are Not Anonymously or Publicly Accessible

Key Management System (KMS)

Task

Ensure Cloud Key Management Service (KMS) Keys Undergo Rotation Within 90-Day Periods

Ensure KMS Key IAM Policies Prevent Anonymous and Public Access

Google Container Registry (GCR)

Task

Ensure Image Vulnerability Scanning using GCR Container Scanning or a third-party provider

Google Kubernetes Engine (GKE)

Task

Ensure GKE Clusters Operate with Custom Service Accounts Instead of Compute Engine Default
Service Account

Ensure network access to GKE clusters is restricted

l1ackerone

Desktop Applications / Executables

In a general sense, a desktop application or executable is an application that runs locally
on a computer device. This application runs independently of a web browser. Other
examples include Command Line Interfaces (CLI), development tools, and utility
programs. This application can perform routines and methods that communicate with
the internet for various purposes.

HackerOne maintains a dedicated methodology for desktop applications built using the
Electron framework. See the section Electron Desktop Applications.

Objectives

Objectives ensure that extensive scope coverage occurs.

Coverage Objectives

Data Storage

Privileged Component

Network Communication

Other communication mechanisms with remote servers

Cryptography

Input sanitization

IPC/RPC

Denial of Service

Imports and exports

Code Quality

Authentication/Authorization Verification

Guidebooks

Guidebooks provide non-restrictive test cases for testers to review per technology and scope.

Data Storage

l1ackerone

Unencrypted Sensitive Data Storage

Insertion of Sensitive Information into Externally-Accessible File or Directory

Insertion of Sensitive Information into Log File

UNIX Symbolic Link (Symlink) Following

Privileged Components

Creation of Temporary File with Insecure Permissions

(Windows) Unquoted Service Paths

Incorrect Permission Assignment for Critical Resource

(MacOS) Insecure Permissions on Binaries/Scripts

(Windows) Insecure Registry Permissions

(Linux) Permissive AppArmor / SELinux policies

Insecure Operations on Binaries/Scripts (local job scheduling)

Insecure Permissions on Startup Processes

Improper Authentication (New System User)

Abuse Elevation Control Mechanism (Setuid and Setgid)

Network Communication

Unauthenticated Services Listening on Localhost

Unnecessary Port Exposure

Public-facing Administrative Interfaces

Network Sniffing

Communication Mechanisms with Remote Servers

Remote APIs/Services

Cryptography

l1ackerone

Secure Transport Layer Channel Verification

Secure Critical Operation Channel Verification

Custom Cryptographic Protocol

Weak Message Signature Verification and Hashing Collisions

Insecure and Deprecated Cryptographic Algorithms

Improper Certificate Validation

Weak Pseudo-Random Number Generator

Hardcoded Keys

Input Sanitization

Path Traversal Issues / ZIP Slip Vulnerabilities

XML External Entity Injection

Improper Input Injection

Inter-process Communication/Remote Procedure Call (IPC/RPC)

(Windows) Insecure Named Pipe Permissions

(MacOS/Linux) Insecure Permissions on Unix Domain Sockets

Custom Application Handle Schemas

Permissions for Custom Application Handle Schemas

Known Vulnerabilities in the RPC Implementation (e.g., RMI, AMF)

Denial of Service

External File Processing Operations

Externally Controlled File Operations

General Operations Impacting System Resources

Imports and Exports

l1ackerone

(Windows) Testing for DLL Hijacking

(MacOS) Testing for Dylib Hijacking

Third-Party Libraries with Assigned CVEs

Code Quality

Binary Protection Mechanisms

Code Signing

Embedded Symbols/PDB Files

Race Conditions

Debugging Code and Verbose Error Logging

Obfuscation / Anti-debugging detection

File Integrity Checks on Critical Assets (certificates/keys)

General Exceptional Conditions

Authentication/Authorization Verification

Appropriate Authentication Verification

Password Best Practices

Session Timeout

Use of Single-factor Authentication

OAuth 2.0 Flows

Improper Restriction of Excessive Authentication Attempts

Insecure Direct Object References

Application Pentest for AWS (Add-on)

This is an “add-on” methodology if your web, mobile, or API-based application is hosted on
AWS. You might have an array of services that support the platform, such as EC2, RDS, S3,
Lambda, etc. This assessment will largely resemble a traditional application pentest but requires
special consideration for specific AWS services used within your stack.

l1ackerone

Objectives

Objectives ensure that extensive scope coverage occurs.

Coverage Objectives

API Gateway: HTTP Verb Tampering

API| Gateway: Improper Access Control

DynamoDB: Injection

EC2: Local File Read / Local File Inclusion

EC2: Secrets Metadata

IAM Roles: Improper Access Control

Lambda: Injection & Pivoting

Lambda: Legacy Endpoint

Public Services or Resources

Route53/S3/EC2: DNS Misconfiguration & Subdomain Takeovers

S3 Bucket: Information Disclosure

S3 Bucket: Read Misconfiguration

S3 Bucket: Write Misconfiguration

Sensitive Data Exposure and Information Exposure Through Debug Information

Using Components with Known Vulnerabilities

l1ackerone

Large Language Model (LLM) Applications (Add-on)

This is another “add-on” methodology for applications that leverage large language models
(LLMs). It is tailored for testing Al/LLM functionalities integrated into larger, traditional
applications. The focus is on secure integration, data flows, and the potential for the Al
component to introduce new vulnerabilities into the existing application.

Objectives

Objectives ensure that extensive scope coverage occurs.

Coverage Objectives

Prompt Injection

Sensitive Information Disclosure

Improper Output Handling

System Prompt Leakage

Misinformation

Unbounded Consumption

Guidebooks

Guidebooks provide non-restrictive test cases for testers to review per technology and scope.

Prompt Injection

Task

Basic Direct Injection Testing

Simple Indirect Injection via Content

Role Playing Restriction Bypass

Multi-prompt Restriction Bypass

Multi-language Restriction Bypass

Code Injection via Prompts

l1ackerone

Unintentional Context Leakage

Output Manipulation

Sensitive Information Disclosure

Task

Advanced PII Exfiltration Techniques

Business Logic Disclosure

Internal System Architecture Revelation

API Key and Credential Extraction

User Session Data Leakage

Multi-tenant Data Isolation Testing

Differential Privacy Bypass

Improper Output Handling

Task

Arbitrary Code Execution via Unvalidated / Unsanitized Responses

Cross-Site Scripting (XSS) via Unvalidated / Unsanitized Responses

SQL Injection via Unvalidated / Unsanitized Responses

Output Sanitization Testing

System Prompt Leakage

Task

System Prompt Extraction

Internal Rule Discovery

Configuration Detail Exposure

Security Control Bypass via Prompt Leakage

l1ackerone

Credential Discovery in System Prompts

Misinformation

Task

Hallucination

False Information

Biased Output Assessment

Misleading Content Generation

Fact Verification Bypass

Source Attribution Manipulation

Unbounded Consumption

Task

Rate Limiting Assessment

Denial of Service Testing

Cost Amplification Testing

Queue Overflow Testing

l1ackerone

Large Language Model (LLM) Applications (Standalone)

This standard methodology is a full deep-dive for Al-native products and high-risk deployments.
These applications utilize a large-scale artificial intelligence model specializing in understanding,
generating, and working with human language. Applications and plugins powered by LLM
technologies carry a unique set of risks. It encompasses a broader range of threats, including
sophisticated adversarial attacks and in-depth model analysis. These standard methodology
tasks extend and deepen those in the LLM Add-on methodology, adding advanced techniques
and end-to-end coverage.

Objectives

Objectives ensure that extensive scope coverage occurs.

Coverage Objectives

Prompt Injection

Sensitive Information Disclosure

Supply Chain Vulnerabilities

Data and Model Poisoning

Improper Output Handling

Excessive Agency

System Prompt Leakage

Vector and Embedding Weaknesses

Misinformation

Unbounded Consumption

Agentic Al Security Threats

Al Safety

* Bold entries indicate objectives that differ from the Add-on variant.

Guidebooks

Guidebooks provide non-restrictive test cases for testers to review per technology and scope.

l1ackerone

Prompt Injection

Task

Advanced Direct Injection Testing

Complex Indirect Injection Scenarios

Multi-modal Injection (Image/Audio/Video)

Adversarial Suffix Attacks

Payload Splitting Techniques

Cross-modal Attack Vectors

Obfuscation Techniques (Base64, Unicode, Emoji)

Multi-language Obfuscation

Virtualization Attacks

Token Smuggling

Context Window Exploitation

Chain-of-Thought Manipulation

Role-based Injection Testing

System Prompt Override

Instruction Hierarchy Bypass

Sensitive Information Disclosure

Task

Advanced PII Extraction Techniques

Model Inversion Attacks

Membership Inference Attacks73

Proprietary Algorithm Exposure

Business Logic Disclosure

l1ackerone

Internal System Architecture Revelation

API Key and Credential Extraction

User Session Data Leakage

Multi-tenant Data Isolation Testing

Differential Privacy Bypass

Supply Chain Vulnerabilities

Task

Advanced Model Provenance Analysis

LoRA Adapter Security Assessment

Model Hub Security Testing

Al Bill of Materials (AI-BOM) Analysis

Dataset Poisoning via Supply Chain

Backdoor Detection in Pre-trained Models

Model Registry Access Control Testing

Data and Model Poisoning

Task

Training Data Poisoning

Fine-tuning Data Manipulation

Embedding Data Poisoning

Label Poisoning Attacks

Backdoor Trigger Injection

Model Parameter Manipulation

Bias Amplification Testing

Model Behavior Alteration

l1ackerone

Targeted Poisoning Attacks

Improper Output Handling

Task

Advanced XSS via LLM Output

Markdown Image injection

SQL Injection via Generated Queries

Command Injection Testing

Path Traversal via LLM

LDAP Injection

XML Injection Testing

Template Injection Attacks

Deserialization Attacks

API| Abuse via Generated Content

Database Manipulation Testing

System Command Execution

Excessive Agency

Task

Autonomous Action Testing

Permission Escalation Assessment

Function Call Abuse Testing

Tool Misuse Detection

API Exploitation via Agents

Multi-agent Coordination Attacks

Workflow Manipulation

l1ackerone

Decision Override Testing

Resource Access Abuse

External System Integration Exploitation

Privilege Boundary Testing

Human Approval Bypass

Agent-to-Agent Communication Exploitation

System Prompt Leakage

Task

Advanced Prompt Extraction Techniques

System Architecture Discovery

Internal Logic Revelation

Security Control Enumeration

Configuration Parameter Extraction

Business Rule Discovery

Filtering Mechanism Bypass

Administrative Instruction Exposure

Vector and Embedding Weaknesses

Task

RAG System Exploitation

Vector Database Injection

Embedding Manipulation

Similarity Search Poisoning

Context Injection via Embeddings

Multi-tenant Vector Leakage

l1ackerone

Embedding Inversion Attacks

Knowledge Base Poisoning

Document Injection Testing

Semantic Search Manipulation

Vector Store Access Control Testing

Retrieval Ranking Manipulation

Cross-tenant Context Leakage

Embedding Model Backdoors

Misinformation

Task

Advanced Hallucination Generation

False Fact Injection

Source Attribution Manipulation

Evidence Fabrication

Credibility Score Manipulation

Citation Spoofing

Authoritative Source Impersonation

Statistical Data Manipulation

Historical Event Distortion

Scientific Misinformation Generation

News Article Fabrication

Expert Opinion Simulation

Research Citation Manipulation

l1ackerone

Unbounded Consumption

Task

Advanced DoS Testing

Resource Exhaustion Attacks

Cost Amplification

Model Extraction Attacks

API| Abuse

Computational Resource Hijacking

GPU Memory Exhaustion

Token Limit Exploitation

Agentic Al Security Threats

Task

Agent Goal Manipulation

MCP Protocol Security Tests

Memory Corruption Attacks

Tool Misuse Exploitation

Privilege Compromise Testing

Authentication Bypass via Agents

Asynchronous Workflow Exploitation

Identity Spoofing

Al-powered Social Engineering

Cascading Failure Induction

Data Exfiltration via Agent Actions

Lateral Movement via Agent Networks

l1ackerone

Al Safety

Task

Safety policy jailbreak probes

Safety filter bypass checks

Harmful content generation

l1ackerone

Electron Desktop Applications (Add-on)

This methodology is used in conjunction with the HackerOne Web Methodology to evaluate
desktop applications built using Electron with an underlying Chromium architecture. Because
these applications are files installed on users’ machines, additional security checks are
employed to ensure the safety of the executable.

Objectives

Objectives ensure that extensive scope coverage occurs.

Coverage Objectives

Injections

Broken Authentication and Session Management

Sensitive Data Exposure

Security Misconfiguration

Insecure Communication

Poor Code Quality

Guidebooks

Guidebooks provide non-restrictive test cases for testers to review per technology and scope.

Injections

Task

JavaScript, CSS Injection

User Host Compromise

Broken Authentication and Session Management

l1ackerone

Unhandled Session Permission Requests from Remote Content

Sensitive Data Exposure

Task

Sensitive Information Extraction

Security Misconfiguration

Task

Allowed Code Execution from Untrusted Content

Unsandboxed Process Execution

Improper Use of Preload Scripts

Chromium Web Security Override

Chromium Experimental Features

Allowed Navigation to Untrusted Origins

Clickjacking via Popups

Insecure Communication

Task

Missing HTTP, Mixed Content, TLS Validation

Poor Code Quality

Task

Unsafe Custom Protocol Handlers

l1ackerone

Reporting

Philosophy

Customers must be equipped with deliverables that are relevant to their stakeholders.

Outcome

Empower customers with thorough documentation for internal and external customers that
demonstrates relevant information about the engagement activities and the unbiased opinion of
HackerOne.

All pentests come with a Letter of Attestation (LoA). This document asserts that a pentest was
conducted on the customer's in-scope assets.

Report sections include:

Executive Summary and Exec Analysis

Most Severe/Prevalent Vulnerabilities

Vulnerability breakdown (by severity, by asset, by type)
Vulnerability reports, with remediation guidance
Methodology and Scope

l1ackerone

	
	
	Executive Summary
	
	Scoping
	
	Phases
	Project Alignment
	Attack Surface Discovery
	Attack Surface Analysis
	Testing
	Reporting
	Retesting
	

	Project Alignment
	Philosophy
	Outcome
	Methodologies
	

	Attack Surface Discovery
	Philosophy
	Outcome
	Methodologies
	

	Attack Surface Analysis
	Philosophy
	Outcome
	Methodologies
	

	Testing
	Philosophy
	Outcome
	Methodologies
	Web
	Objectives
	Guidebooks

	
	Android
	Objectives
	
	Guidebooks

	
	iOS
	Objectives
	​Guidebooks

	
	API
	Objectives
	Guidebooks

	
	External Network
	Objectives
	Guidebooks

	
	Internal Network
	Objectives
	Guidebooks
	

	
	Network Segmentation Testing
	​Objectives
	
	Guidebooks

	AWS Security Configuration Review
	
	Guidebooks

	
	Azure Security Config Review
	Guidebooks

	
	Google Cloud Platform Security Config Review
	
	Guidebooks

	
	Desktop Applications / Executables
	Objectives
	Guidebooks

	
	
	
	
	
	
	
	
	
	
	Application Pentest for AWS (Add-on)
	Objectives

	
	Large Language Model (LLM) Applications (Add-on)
	Objectives
	Guidebooks

	
	
	Large Language Model (LLM) Applications (Standalone)
	Objectives
	Guidebooks

	
	
	
	
	
	
	​
	Electron Desktop Applications (Add-on)
	Objectives
	Guidebooks

	
	Reporting

